9 research outputs found

    Prognostics and health management of power electronics

    Get PDF
    Prognostics and health management (PHM) is a major tool enabling systems to evaluate their reliability in real-time operation. Despite ground-breaking advances in most engineering and scientific disciplines during the past decades, reliability engineering has not seen significant breakthroughs or noticeable advances. Therefore, self-awareness of the embedded system is also often required in the sense that the system should be able to assess its own health state and failure records, and those of its main components, and take action appropriately. This thesis presents a radically new prognostics approach to reliable system design that will revolutionise complex power electronic systems with robust prognostics capability enhanced Insulated Gate Bipolar Transistors (IGBT) in applications where reliability is significantly challenging and critical. The IGBT is considered as one of the components that is mainly damaged in converters and experiences a number of failure mechanisms, such as bond wire lift off, die attached solder crack, loose gate control voltage, etc. The resulting effects mentioned are complex. For instance, solder crack growth results in increasing the IGBT’s thermal junction which becomes a source of heat turns to wire bond lift off. As a result, the indication of this failure can be seen often in increasing on-state resistance relating to the voltage drop between on-state collector-emitter. On the other hand, hot carrier injection is increased due to electrical stress. Additionally, IGBTs are components that mainly work under high stress, temperature and power consumptions due to the higher range of load that these devices need to switch. This accelerates the degradation mechanism in the power switches in discrete fashion till reaches failure state which fail after several hundred cycles. To this end, exploiting failure mechanism knowledge of IGBTs and identifying failure parameter indication are background information of developing failure model and prognostics algorithm to calculate remaining useful life (RUL) along with ±10% confidence bounds. A number of various prognostics models have been developed for forecasting time to failure of IGBTs and the performance of the presented estimation models has been evaluated based on two different evaluation metrics. The results show significant improvement in health monitoring capability for power switches.Furthermore, the reliability of the power switch was calculated and conducted to fully describe health state of the converter and reconfigure the control parameter using adaptive algorithm under degradation and load mission limitation. As a result, the life expectancy of devices has been increased. These all allow condition-monitoring facilities to minimise stress levels and predict future failure which greatly reduces the likelihood of power switch failures in the first place

    Stochastic RUL calculation enhanced with TDNN-based IGBT failure modeling

    Get PDF
    Power electronics are widely used in the transport and energy sectors. Hence, the reliability of these power electronic components is critical to reducing the maintenance cost of these assets. It is vital that the health of these components is monitored for increasing the safety and availability of a system. The aim of this paper is to develop a prognostic technique for estimating the remaining useful life (RUL) of power electronic components. There is a need for an efficient prognostic algorithm that is embeddable and able to support on-board real-time decision-making. A time delay neural network (TDNN) is used in the development of failure modes for an insulated gate bipolar transistor (IGBT). Initially, the time delay neural network is constructed from training IGBTs' ageing samples. A stochastic process is performed for the estimation results to compute the probability of the health state during the degradation process. The proposed TDNN fusion with a statistical approach benefits the probability distribution function by improving the accuracy of the results of the TDDN in RUL prediction. The RUL (i.e., mean and confidence bounds) is then calculated from the simulation of the estimated degradation states. The prognostic results are evaluated using root mean square error (RMSE) and relative accuracy (RA) prognostic evaluation metrics

    Computationally efficient, real-time, and embeddable prognostic techniques for power electronics

    Get PDF
    Power electronics are increasingly important in new generation vehicles as critical safety mechanical subsystems are being replaced with more electronic components. Hence, it is vital that the health of these power electronic components is monitored for safety and reliability on a platform. The aim of this paper is to develop a prognostic approach for predicting the remaining useful life of power electronic components. The developed algorithms must also be embeddable and computationally efficient to support on-board real-time decision making. Current state-of-the-art prognostic algorithms, notably those based on Markov models, are computationally intensive and not applicable to real-time embedded applications. In this paper, an isolated-gate bipolar transistor (IGBT) is used as a case study for prognostic development. The proposed approach is developed by analyzing failure mechanisms and statistics of IGBT degradation data obtained from an accelerated aging experiment. The approach explores various probability distributions for modeling discrete degradation profiles of the IGBT component. This allows the stochastic degradation model to be efficiently simulated, in this particular example ~1000 times more efficiently than Markov approaches

    Prognostic Reasoner based adaptive power management system for a more electric aircraft

    Get PDF
    This research work presents a novel approach that addresses the concept of an adaptive power management system design and development framed in the Prognostics and Health Monitoring(PHM) perspective of an Electrical power Generation and distribution system(EPGS).PHM algorithms were developed to detect the health status of EPGS components which can accurately predict the failures and also able to calculate the Remaining Useful Life(RUL), and in many cases reconfigure for the identified system and subsystem faults. By introducing these approach on Electrical power Management system controller, we are gaining a few minutes lead time to failures with an accurate prediction horizon on critical systems and subsystems components that may introduce catastrophic secondary damages including loss of aircraft. The warning time on critical components and related system reconfiguration must permits safe return to landing as the minimum criteria and would enhance safety. A distributed architecture has been developed for the dynamic power management for electrical distribution system by which all the electrically supplied loads can be effectively controlled.A hybrid mathematical model based on the Direct-Quadrature (d-q) axis transformation of the generator have been formulated for studying various structural and parametric faults. The different failure modes were generated by injecting faults into the electrical power system using a fault injection mechanism. The data captured during these studies have been recorded to form a “Failure Database” for electrical system. A hardware in loop experimental study were carried out to validate the power management algorithm with FPGA-DSP controller. In order to meet the reliability requirements a Tri-redundant electrical power management system based on DSP and FPGA has been develope

    Experiment results of failure progression from low power wires

    Get PDF
    Despite various studies that have been conducted so far on the failure of high power cables, failure progression in low power cables, wires and interconnections have not been well understood yet. In general, it is hypothesised that failures of wires are progressed from random intermittent failures that are gradually developed as hard faults. This paper aims to present a test rig and possible test techniques that can be used for testing the failure progression of wires and interconnections. Research presented in this paper is based on tools, equipment and techniques that facilitate various ageing mechanisms needed to capture proper and right failure patterns from low power cables, wires and interconnections. Paper originally presented at the 5th International Conference in Through-life Engineering Services Cranfield University, 1st and 2nd November 2016

    IGBT thermal stress reduction using advance control strategy

    Get PDF
    Next-generation advances in stress control strategy will enable renewable energies, such as solar energy, to become more reliable and available. Critical components, such as power electronics, present uncertainties to the system control in malfunctioning process, which reduces the target of more clean energy development and CO2 emission reduction. Thus, developing and harnessing sustainable energy requires mitigating the impact of the variability of the source of energy and the impact of the adaptive stress control deployed for the proportional, integral, derivative (PID) controller to minimize the thermal stress in the power switch insulated gate bipolar transistor (IGBT). In response to this challenge, a fuzzy linear matrix inequality (FLMI) PID controller proposes initiatives for customizing parameters of PID controller corresponding to the uncertainty of IGBTs. In this paper, the uncertainty of the boost converter has been evaluated in the dynamic of the LMI model and Takagi-Sugino (TS) has applied in closed loop control to overcome the instability of the Boost converter parameters. Paper originally presented at the 5th International Conference in Through-life Engineering Services Cranfield University, 1st and 2nd November 2016

    PHM Based Adaptive Power Management System for a More Electric Aircraft

    Get PDF
    This research work presents a novel approach that addresses the concept of an adaptive power management system design and development framed in the Prognostics and Health Monitoring(PHM) perspective of an Electrical power Generation and distribution system(EPGS).PHM algorithms were developed to detect the health status of EPGS components which can accurately predict the failures and also able to calculate the Remaining Useful Life(RUL), and in many cases reconfigure for the identified system and subsystem faults. By introducing these approach on Electrical power Management system controller, we are gaining a few minutes lead time to failures with an accurate prediction horizon on critical systems and subsystems components that may introduce catastrophic secondary damages including loss of aircraft. The warning time on critical components and related system reconfiguration must permits safe return to landing as the minimum criteria and would enhance safety. A distributed architecture has been developed for the dynamic power management for electrical distribution system by which all the electrically supplied loads can be effectively controlled. The different failure modes were generated by injecting faults into the electrical power system using a fault injection mechanism. The data captured during these studies have been recorded to form a “Failure Database” for electrical system. A hardware in loop experimental study was carried out to validate the power management algorithm with FPGA-DSP controller. In order to meet the reliability requirements a Tri-redundant electrical power management system based on DSP and FPGA has been developed

    Deep Learning Model for Industrial Leakage Detection Using Acoustic Emission Signal

    Get PDF
    Intelligent fault diagnosis methods have replaced time consuming and unreliable human analysis, increasing anomaly detection efficiency. Deep learning models are clear cut techniques for this purpose. This paper’s fundamental purpose is to automatically detect leakage in tanks during production with more reliability than a manual inspection, a common practice in industries. This research proposes an inspection system to predict tank leakage using hydrophone sensor data and deep learning algorithms after production. In this paper, leak detection was investigated using an experimental setup consisting of a plastic tank immersed underwater. Three different techniques for this purpose were implemented and compared with each other, including fast Fourier transform (FFT), wavelet transforms, and time-domain features, all of which are followed with 1D convolution neural network (1D-CNN). Applying FFT and converting the signal to a 1D image followed by 1D-CNN showed better results than other methods. Experimental results demonstrate the effectiveness and the superiority of the proposed methodology for detecting real-time leakage inaccuracy

    Skill development in the wind energy sector: A serious game development approach

    No full text
    Nowadays, it is necessary to train professionals to address today's changing in the labor market and promote the competitive economy. As a result of using an interactive training tool, the sector s competitiveness as well as the staff s qualification would be improved through the promoting learning with Open Educational Resources (OER) and their access to the professional. Training the professionals will promote the competitive economy and will facilitate the mobility and professionalization of the personnel particularly in increasing sectors such as wind energy. The ICT tools are a valuable solution for the wind energy sector considering that wind farms are often located in remote areas and an ICT training tool would facilitate the staff s qualification from every place. Providing information and advices about the operational (installation and maintenance) skills will improve notably the qualification of the staff involved in the wind sector, promoting an innovative training to consolidate the sustainability of this sector specially now when in addition of new installed power a revamping of the existing wind farms is needed in many European countries. In parallel the tool being developed within this work would learn from the experience and from the best practices. Enhancing digital integration in training will improve the demands of the current market
    corecore